研究方向
- 水文、水动力、地下水、地表-地下水交互数值模拟研究
应用领域:城市洪涝灾害;流域水文模拟;滨海湿地海水入侵;河流交汇区等
- 多孔介质多相流数值模拟研究
应用领域:页岩油气开采;地下水污染修复;含水层、包气带物质反应运移等
- 先进数值计算方法及高性能数值模型研发
应用领域:机器学习与高性能并行计算在水动力、地下水模拟中的应用等
教育经历
2014 - 2019:德克萨斯大学奥斯汀分校|土木工程|博士
2013 - 2014:加利福尼亚大学伯克利分校|土木工程|硕士
2011 - 2013:密西根大学安娜堡分校|土木工程|本科
2009 - 2013:上海交通大学|机械制造及自动化|本科
工作经历
2022 至今: 同济大学|特聘研究员
2019 - 2021:劳伦斯伯克利国家实验室|博士后研究员
招生招聘
常年招聘硕士、博士、博士后。欢迎对数值模拟、并行计算、机器学习感兴趣的同学加入(无需相关基础),详情请邮件咨询。同时,可访问我的其他主页:
- 土木学院主页(已停更)
- English Homepage
- 谷歌学术
课题组
出版论著
期刊论文(截至2024年9月):
[25] Z Li, G Rickert, N Zheng, Z Zhang, I Ozgen-Xian, D Caviedes-Voullieme, SERGHEI v2.0: introducing a performance-portable, high-performance three-dimensional variably-saturated subsurface flow solver (SERGHEI-RE). Geoscientific Model Development [preprint] (2024), https://doi.org/10.5194/egusphere-2024-2588
[24] Z Li, H Li, Z Zhang, C Dai, S Jiang, Influence of building collapse on pluvial and fluvial flood inundation of metro stations in central Shanghai. Natural Hazards and Earth System Sciences [preprint] (2024), https://doi.org/10.5194/egusphere-2024-1088
[23] Y Han, C Dai, J Li, Z Li, et al, Reversible surfactant combined with micro-nano bubbles and peroxymonosulfate: A method for cyclic remediation of PAHs contaminated soil and groundwater. Separation and Purification Technology (2024), https://doi.org/10.1016/j.seppur.2024.129491
[22] J Zhang, C Dai, J Li, X You, J Hu, Y Duan, J Guo, Y Zhao, Y Han, L Zhou, X Lai, R Fu, Y Zhang, Z Li, K Leong, In-situ targeted removal of naphthalene from groundwater by peroxymonosulfate activation using molecularly imprinted activated carbon: Efficacy, mechanism and applicability. Separation and Purification Technology (2024), https://doi.org/10.1016/j.seppur.2024.127730
[21] X Zhang, S Jiang, N Zheng, X Xia, Z Li, R Zhang, J Zhang, X Wang, Integration of DDPM and ILUES for Simultaneous Identification of Contaminant Source Parameters and Non-Gaussian Channelized Hydraulic Conductivity Field. Water Resources Research (2024), https://doi.org/10.1029/2023WR036893
[20] N Zheng, Z Li, X Xia, S Gu, X Li, S Jiang, Estimating line contaminant sources in non-Gaussian groundwater conductivity fields using deep learning-based framework. Journal of Hydrology (2024), 630, 130727, https://doi.org/10.1016/j.jhydrol.2024.130727
[19] Z Li*, D Caviedes-Voullieme, I Ozgen-Xian, S Jiang, N Zheng, A comparison of numerical schemes for the GPU-accelerated simulation of variably-saturated groundwater flow. Environmental Modelling & Software (2024), 171, 105900, https://doi.org/10.1016/j.envsoft.2023.105900
[18] C Wu, S Jiang, X Xia, Y Sun, Z Li, M Ju, S Li and S Liu, Estimation of pollution sources and hydraulic conductivity field in a coastal aquifer under tidal effects. Marine Georesources & Geotechnology (2024), https://doi.org/10.1080/1064119X.2023.2280636
[17] S Li, C Dai, Y Duan, Z Li, et al, Non-radical pathways in peracetic acid-based micropollutant degradation: A comprehensive review of mechanisms, detection methods, and promising applications. Separation and Purification Technology (2024), 330, 125240, https://doi.org/10.1016/j.seppur.2023.125240
[16] Z Li*, MT Reagan, GJ Moridis, History-matching shale reservoir production with a multi-scale, non-uniform fracture network. Gas Science and Engineering (2023), 115, 205019, https://doi.org/10.1016/j.jgsce.2023.205019
[15] Y Han, C Dai, J Li, Z Li, X You, R Fu, Y Zhang, L Zhou, Kill two birds with one stone: Solubilizing PAHs and activating PMS by photoresponsive surfactants for the cycle remediation of contaminated groundwater. Separation and Purification Technology (2023), 320, 124242, https://doi.org/10.1016/j.seppur.2023.124242
[14] N Zheng, S Jiang, X Xia, W Kong, Z Li, et al, Efficient estimation of groundwater contaminant source and hydraulic conductivity by an ILUES framework combining GAN and CNN, Journal of Hydrology (2023), 621, 129677, https://doi.org/10.1016/j.jhydrol.2023.129677
[13] C Dai, X You, Q Liu, Y Han, Y Duan, J Hu, J Li, Z Li, et al, Peroxymonosulfate activation by Ru/CeO2 for degradation of Triclosan: Efficacy, mechanisms and applicability in groundwater. Chemical Engineering Journal (2023), 463, 142479, https://doi.org/10.1016/j.cej.2023.142479
[12] X Shen, S Li, H Cai, Z Li* , N Cui, Distribution and interaction characteristics of water quality at the stratified confluence reservoirs. Journal of Hydrology (2023), 620, 129464,https://doi.org/10.1016/j.jhydrol.2023.129464
[11] Z Li*, BR Hodges, X Shen, Modeling hypersalinity caused by evaporation and surface-subsurface exchange in a coastal marsh. Journal of Hydrology (2023), 618, 129268, https://doi.org/10.1016/j.jhydrol.2023.129268
[10] W Tong, C Dai, J Hu, J Li, M Gao, Z Li, L Zhou, Y Zhang, L Kahon, Solubilization and remediation of polycyclic aromatic hydrocarbons in groundwater by cationic surfactants coupled nanobubbles: Synergistic mechanism and application. Journal of Molecular Liquids (2023), 373, 121242, https://doi.org/10.1016/j.molliq.2023.121242
[9] L Stolze, B Arora, D Dwivedi, C Steefel, Z Li, S Carrero, B Gilbert, P Nico, M Bill, Aerobic respiration controls on shale weathering. Geochimica et Cosmochimica Acta (2023), 340, 172-188, https://doi.org/10.1016/j.gca.2022.11.002
[8] Z Li*, CS Sherman, MT Reagan, GJ Moridis, JP Morris, Effects of heterogeneous fracture aperture on multiphase production from shale reservoirs. Transport in Porous Media (2022), 144, 797-823, https://doi.org/10.1007/s11242-022-01841-0
[7] X Shen, BR Hodges, R Li, Z Li, JL Fan, NB Cui, HJ Cai, Factors influencing distribution characteristics of total dissolved gas supersaturation at confluences. Water Resources Research (2021) 57 (6), e2020WR028760, https://doi.org/10.1029/2020WR028760
[6] Z Li*, BR Hodges, Revisiting surface-subsurface exchange at intertidal zone with a coupled 2D hydrodynamic and 3D variably-saturated groundwater model. (2021) Water 13 (7), 902, https://doi.org/10.3390/w13070902
[5] JT Birkholzer, J Morris, JR Bargar, F Brondolo, A Cihan, D Crandall, H Deng, W Fan, W Fu, P Fu, A Hakala, Y Hao, J Huang, AD Jew, T Kneafsey, Z Li, et al, A new modeling framework for multi-scale simulation of hydraulic fracturing and production from unconventional reservoir. (2021) Energies 14 (3), 641, https://doi.org/10.3390/en14030641
[4] Z Li*, I Ozgen-Xian, FZ Maina, A mass-conservative predictor-corrector solution to the 1D Richards equation with adaptive time control. (2021) Journal of Hydrology 592, 125809, https://doi.org/10.1016/j.jhydrol.2020.125809
[3] Z Li*, BR Hodges, On modeling subgrid-scale macro-structures in narrow twisted channels. (2020) Advances in Water Resources 135, 103465, https://doi.org/10.1016/j.advwatres.2019.103465
[2] Z Li*, BR Hodges, Model instability and channel connectivity for 2D coastal marsh simulations. (2019) Environmental Fluid Mechanics 19 (5), 1309-1338, https://doi.org/10.1007/s10652-018-9623-7
[1] Z Li*, BR Hodges, Modeling subgrid-scale topographic effects on shallow marsh hydrodynamics and salinity transport. (2019) Advances in Water Resources 129, 1-15, https://doi.org/10.1016/j.advwatres.2019.05.004